Saltar al contenido principal

Lamentablemente no somos totalmente compatibles con su navegador. Si tiene la opción, actualice a una versión más reciente o utilice Mozilla Firefox, Microsoft Edge, Google Chrome o Safari 14 o posterior. Si no puede y necesita ayuda, envíenos sus comentarios.

Agradeceríamos sus comentarios sobre esta nueva experiencia.Díganos qué piensa se abre en una nueva pestaña/ventana

Elsevier
Publique con nosotros
Press release

Discovery of hemoglobin in the epidermis sheds new light on our skin's protective properties

Philadelphia | 17 de noviembre de 2023

Research published in the Journal of Investigative Dermatology provides important insights into skin's defense mechanism against aging and cancer

Researchers have shown for the first time that hemoglobin, a protein found in red blood cells, where it binds oxygen, is also present in the epidermis, our skin's outermost body tissue. The study se abre en una nueva pestaña/ventana, which appears in the Journal of Investigative Dermatology se abre en una nueva pestaña/ventana, published by Elsevier, provides important insights into the properties of our skin's protective external layer.

This research was driven by a curiosity about how the epidermis protects our delicate body from the environment and what unexpected molecules are expressed in the epidermis. Researchers discovered the hemoglobin α protein in keratinocytes of the epidermis and in hair follicles. This unexpected evidence adds a new facet to the understanding of the workings of our skin's defense mechanisms.

Lead investigator of the study Masayuki Amagai, MD, PhD, Department of Dermatology, Keio University School of Medicine, Tokyo, and Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, explains: "The epidermis consists of keratinized stratified squamous epithelium, which is primarily composed of keratinocytes. Previous studies have identified the expression of various genes with protective functions in keratinocytes during their differentiation and formation of the outer skin barrier. However, other barrier-related genes escaped prior detection because of difficulties obtaining adequate amounts of isolated terminally differentiated keratinocytes for transcriptome analysis."

Hemoglobin binds gases such as oxygen, carbon dioxide, and nitric oxide, and it is an iron carrier via the heme complex. These properties make epidermal hemoglobin a prime candidate for antioxidant activity and potentially other roles in barrier function.

Professor Amagai continues: "We conducted a comparative transcriptome analysis of the whole and upper epidermis, both of which were enzymatically separated as cell sheets from human and mouse skin. We discovered that the genes responsible for producing hemoglobin were highly active in the upper part of the epidermis. To confirm our findings, we used immunostaining to visualize the presence of hemoglobin α protein in keratinocytes of the upper epidermis."

Professor Amagai concludes: "Our study showed that epidermal hemoglobin was upregulated by oxidative stress and inhibited the production of reactive oxygen species in human keratinocyte cell cultures. Our findings suggest that hemoglobin α protects keratinocytes from oxidative stress derived from external or internal sources such as UV irradiation and impaired mitochondrial function, respectively. Therefore, the expression of hemoglobin by keratinocytes represents an endogenous defense mechanism against skin aging and skin cancer."

---

Notes for editors

The article is “Keratinocytes of the Upper Epidermis and Isthmus of Hair Follicles Express Hemoglobin mRNA and Protein,” by Umi Tahara, Takeshi Matsui, Toru Atsugi, Keitaro Fukuda, Tommy W Terooatea, Aki Minoda, Akiharu Kubo, and Masayuki Amagai (https://doi.org/10.1016/j.jid.2023.08.008 se abre en una nueva pestaña/ventana). It appears online in the Journal of Investigative Dermatology, volume 143, issue 12(December 2023), published by Elsevier.

The article is openly available at https://www.jidonline.org/article/S0022-202X(23)02560-5/fulltext se abre en una nueva pestaña/ventana. An accompanying video is posted at https://www.youtube.com/shorts/D_YB1KVPElw se abre en una nueva pestaña/ventana.

The full text of the article is also available to credentialed journalists upon request; contact Theresa Monturano at +1 215 239 3711 or[email protected] se abre en una nueva pestaña/ventana. Journalists wishing to interview the authors should contact Masayuki Amagai, MD, PhD, at [email protected] se abre en una nueva pestaña/ventana, or Umi Tahara at [email protected] se abre en una nueva pestaña/ventana.

This study was financially supported by the Japan Agency for Medical Research and Development (grant number: 21gm1010001) and by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (S) (grant number: JP22H04994).

The authors wish to thank Dr. Aki Minoda and Dr. Tommy W. Terooatea for their contributions during this research. Their analyses were very helpful in directly validating the presence of hemoglobin in keratinocytes, free from red blood cells.

About the Journal of Investigative Dermatology

The Journal of Investigative Dermatology se abre en una nueva pestaña/ventana (JID) is the official journal of the Society of Investigative Dermatology and the European Society for Dermatological Research. JID publishes high impact reports describing original research related to all aspects of cutaneous biology and skin diseases. Descriptions of important findings that result from basic, translational, or clinical research are published. Clinical research can include, but is not limited to, interventional trials, genetics studies, epidemiology, and health services research. www.jidonline.org se abre en una nueva pestaña/ventana

About Elsevier

As a global leader in scientific information and analytics, Elsevier helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. We do this by facilitating insights and critical decision-making with innovative solutions based on trusted, evidence-based content and advanced AI-enabled digital technologies.

We have supported the work of our research and healthcare communities for more than 140 years. Our 9,500 employees around the world, including 2,500 technologists, are dedicated to supporting researchers, librarians, academic leaders, funders, governments, R&D-intensive companies, doctors, nurses, future healthcare professionals and educators in their critical work. Our 2,900 scientific journals and iconic reference books include the foremost titles in their fields, including Cell Press, The Lancet and Gray’s Anatomy.

Together with the Elsevier Foundation se abre en una nueva pestaña/ventana, we work in partnership with the communities we serve to advance inclusion and diversity in science, research and healthcare in developing countries and around the world.

Elsevier is part of RELX se abre en una nueva pestaña/ventana, a global provider of information-based analytics and decision tools for professional and business customers. For more information on our work, digital solutions and content, visit www.elsevier.com.

Contacto

TM

Theresa Monturano

Senior Publisher

Elsevier

+1 215 239 3711

Correo electrónico Theresa Monturano