Apuntes de Fisiología: la función circulatoria
10 de septiembre de 2019
Por Elsevier Connect
Hoy abordamos una de las funciones fisiológicas más importantes de nuestro organismo: la circulación sanguínea. Recorremos las páginas del referente de la asignatura para decenas de generaciones de médicos, Guyton y Hall. Tratado de fisiología médica se abre en una nueva pestaña/ventana, para resumir sus principios básicos y características físicas.
La circulación, tal y como se ve en la infografía que compartimos hoy, se divide en ciculación sistémica y circulación pulmonar. Como la circulación sistémica aporta el flujo sanguíneo a todos los tejidos del organismo excepto los pulmones, también se conoce como circulación mayor o circulación periférica.
Componentes funcionales de la circulación
Antes de comentar los detalles de la función circulatoria, es importante entender el papel que tiene cada componente de la circulación:
La
función de las arterias
consiste en transportar la sangre con una presión alta hacia los tejidos, motivo por el cual las arterias tienen unas paredes vasculares fuertes y unos flujos sanguíneos importantes con una velocidad alta.
Las
arteriolas
son las últimas ramas pequeñas del sistema arterial y actúan controlando los conductos a través de los cuales se libera la sangre en los capilares. Las arteriolas tienen paredes musculares fuertes que pueden cerrarlas por completo o que pueden, al relajarse, dilatar los vasos varias veces, con lo que pueden alterar mucho el flujo sanguíneo en cada lecho tisular en respuesta a sus necesidades.
La
función de los capilares
consiste en el intercambio de líquidos, nutrientes, electrólitos, hormonas y otras sustancias en la sangre y en el líquido intersticial. Para cumplir esta función, las paredes del capilar son fi nas y tienen muchos poros capilares diminutos, que son permeables al agua y a otras moléculas pequeñas.
Las
vénulas
recogen la sangre de los capilares y después se reúnen gradualmente formando venas de tamaño progresivamente mayor. Las venas funcionan como conductos para el transporte de sangre que vuelve desde las vénulas al corazón; igualmente importante es que sirven como una reserva importante de sangre extra. Como la presión del sistema venoso es muy baja, las paredes de las venas son finas. Aun así, tienen una fuerza muscular suficiente para contraerse o expandirse y, de esa forma, actuar como un reservorio controlable para la sangre extra, mucha o poca, dependiendo de las necesidades de la circulación.
Volúmenes de sangre en los distintos componentes de la circulación
En la infografía mostramos una visión general de la circulación junto con los porcentajes del volumen de sangre total en los segmentos principales de la circulación. Por ejemplo, aproximadamente el 84% de todo el volumen de sangre del organismo se encuentra en la circulación sistémica y el 16% en el corazón y los pulmones. Del 84% que está en la circulación sistémica, aproximadamente el 64% está en las venas, el 13% en las arterias y el 7% en las arteriolas y capilares sistémicos. El corazón contiene el 7% de la sangre, y los vasos pulmonares, el 9%. Resulta sorprendente el bajo volumen de sangre que hay en los capilares, aunque es allí donde se produce la función más importante de la circulación, la difusión de las sustancias que entran y salen entre la sangre y los tejidos.
Obsérvese en particular que la superficie transversal de las venas es mucho mayor que la de las arterias, con una media cuatro veces mayor en las primeras. Esta diferencia explica la gran capacidad de reserva de sangre en el sistema venoso comparado con el sistema arterial.
Como debe pasar el mismo volumen de flujo sanguíneo (F) a través de cada segmento de la circulación en cada minuto, la velocidad del flujo sanguíneo (v) es inversamente proporcional a la superficie transversal vascular (A). Es decir, en condiciones de reposo la velocidad es como media de 33 cm/s en la aorta pero con una velocidad solo de 1/1.000 en los capilares, es decir, aproximadamente 0,3 mm/s. No obstante, como los capilares tienen una longitud de solo 0,3 a 1 mm, la sangre solo se queda allí durante 1-3 s, un hecho sorprendente, porque toda la difusión de los nutrientes y electrólitos que tiene lugar a través de la pared capilar debe realizarse en este tiempo tan corto.
Presiones en las distintas porciones de la circulación
Como el corazón bombea la sangre continuamente hacia la aorta, la presión media en este vaso es alta, con una media en torno a los 100 mmHg. Además, como el bombeo cardíaco es pulsátil, la presión arterial alterna entre una presión sistólica de 120 mmHg y una diastólica de 80 mmHg, como se ve en la parte inferior de la infografía. A medida que el flujo sanguíneo atraviesa la circulación sistémica, la presión media va cayendo progresivamente hasta llegar casi a 0 mmHg en el momento en el que alcanza la terminación de las venas cava superior e inferior, donde se vacía en la aurícula derecha del corazón. La presión de los capilares sistémicos oscila desde 35 mmHg cerca de los extremos arteriolares hasta tan solo 10 mmHg cerca de los extremos venosos, pero la presión media "funcional" en la mayoría de los lechos vasculares es de 17 mmHg, aproximadamente, una presión suficientemente baja que permite pequeñas fugas de plasma a través de los poros diminutos de las paredes capilares, aunque los nutrientes pueden difundir fácilmente a través de los mismos poros hacia las células de los tejidos externos. E n la parte derecha del cuadro se ven las presiones respectivas en los distintos componentes de la circulación pulmonar. En las arterias pulmonares la presión es pulsátil, igual que en la aorta, pero la presión es bastante menor: la presión sistólica arterial pulmonar alcanza un promedio de 25 mmHg, y la diastólica, de 8 mmHg, con una presión arterial pulmonar media de solo 16 mmHg. La media de la presión capilar pulmonar alcanza un promedio de solo 7 mmHg. Aun así, el flujo sanguíneo por minuto a través de los pulmones es el mismo que en la circulación sistémica. Las bajas presiones del sistema pulmonar coinciden con las necesidades de los pulmones, ya que lo único que se necesita es la exposición de la sangre en los capilares pulmonares al oxígeno y otros gases en los alvéolos pulmonares.
Principios básicos de la función circulatoria
Aunque la función circulatoria es muy compleja, hay tres principios básicos que subyacen en todas las funciones del sistema.
El flujo sanguíneo en la mayoría de los tejidos está controlado según la necesidad tisular. Cuando los tejidos son activos necesitan un aporte mucho mayor de nutrientes y, por tanto, un flujo sanguíneo mucho mayor que en reposo, en ocasiones hasta 20 o 30 veces el nivel de reposo, a pesar de que el corazón normalmente no puede aumentar su gasto cardíaco en más de 4-7 veces su gasto cardíaco por encima del nivel en reposo. Por tanto, no es posible aumentar simplemente el flujo sanguíneo en todo el organismo cuando un tejido en particular demanda el aumento del flujo. Por el contrario, la microvasculatura de cada tejido vigila continuamente las necesidades de su territorio, así como la disponibilidad de oxígeno y de otros nutrientes y la acumulación de dióxido de carbono y de otros residuos, y, a su vez, estos microvasos actúan directamente sobre los vasos sanguíneos locales, dilatándolos y contrayéndolos, para controlar el flujo sanguíneo local con precisión hasta el nivel requerido para la actividad tisular. Además, el control nervioso de la circulación desde el sistema nervioso central y las hormonas también colaboran en el control del flujo sanguíneo tisular.
El gasto cardíaco es la suma de todos los flujos locales de los tejidos. Cuando el flujo sanguíneo atraviesa un tejido, inmediatamente vuelve al corazón a través de las venas y el corazón responde automáticamente a este aumento del flujo aferente de sangre bombeándolo inmediatamente hacia las arterias. Así, el corazón actúa como un autómata respondiendo a las necesidades de los tejidos. No obstante, a menudo necesita ayuda en forma de señales nerviosas especiales que le hagan bombear las cantidades necesarias del flujo sanguíneo.
Aumentan la fuerza de bomba del corazón
Provocan la contracción de los grandes reservorios venosos para aportar más sangre al corazón
Provocan una constricción generalizada de las arteriolas de muchos tejidos, con lo que se acumula más sangre en las grandes arterias para aumentar la presión arterial
La regulación de la presión arterial es generalmente independiente del control del flujo sanguíneo local o del control del gasto cardíaco. El sistema circulatorio está dotado de un extenso sistema de control de la presión arterial. Por ejemplo, si en algún momento la presión cae significativamente por debajo del nivel normal aproximado de 100 mmHg, una descarga de reflejos nerviosos provoca en pocos segundos una serie de cambios circulatorios que elevan la presión de nuevo hasta la normalidad. En especial, las señales nerviosas:
Después, y en períodos más prolongados, horas o días, los riñones también tienen un papel importante en el control de la presión, tanto al segregar hormonas que controlan la presión como al regular el volumen de sangre. Así pues, la circulación atiende específicamente las necesidades de cada tejido en particular.