Saltar al contenido principal

Lamentablemente no somos totalmente compatibles con su navegador. Si tiene la opción, actualice a una versión más reciente o utilice Mozilla Firefox, Microsoft Edge, Google Chrome o Safari 14 o posterior. Si no puede y necesita ayuda, envíenos sus comentarios.

Agradeceríamos sus comentarios sobre esta nueva experiencia.Díganos qué piensa se abre en una nueva pestaña/ventana

Elsevier
Publique con nosotros

Keynote speaker

Prof. Georg Duda

PGD

Prof. Georg Duda

Berlin Institute of Health, Charité, and Wyss Institute, Harvard University, USA

Talk Title: Mechanics of Bone Healing

Georg is the founding director of the Julius Wolff Institute at the Berlin Institute of Health of the Charité – Universitätsmedizin Berlin, a joint faculty of Humboldt University and Free University of Berlin.

The Julius Wolff Institute brings together researchers from engineering, biomathematics, biology, biochemistry, immunology, and clinical scientists to develop new therapeutic strategies that enables regeneration in injured, compromised, or degenerated bones, muscles or joints. Conceptually, Georg’s research aims at understanding the endogenous cascades that enable scar-free regeneration of bones and tries to unravel this power also for unmet medical needs that are hindered in regeneration. At the start of healing, cells self-organize, migrate, and contract in a highly inflamed environment with lack of nutrient supply but exaggerated mechanical conditions. It is fascinating that under these challenging conditions healing of bone almost always takes place, independent of gender, age or many compromised settings patients suffer. But in some, this healing is lagging or completely hindered. Aim of Georg’s work is to understand how immune-therapeutic or mechano-therapeutic strategies could enable healing even in such impaired regenerative settings. All our approaches are motivated by unmet medical needs and a thorough analyses of these. Our basic science let to new concepts in joint replacements, fracture fixation devices, companion diagnostics or cell therapies for muscle and bone regeneration. Our data is basis for all approvals of hip, knee and should implants worldwide.