주요 콘텐츠로 건너뛰기

귀하의 브라우저가 완벽하게 지원되지 않습니다. 옵션이 있는 경우 최신 버전으로 업그레이드하거나 Mozilla Firefox, Microsoft Edge, Google Chrome 또는 Safari 14 이상을 사용하세요. 가능하지 않거나 지원이 필요한 경우 피드백을 보내주세요.

이 새로운 경험에 대한 귀하의 의견에 감사드립니다.의견을 말씀해 주세요새 탭/창에서 열기

Elsevier
엘스비어와 함께 출판

Conference speaker

Amy E. Shyer

AES

Amy E. Shyer

The Rockefeller University, USA

During development, cells must arrange into particular tissue patterns in order to  order to become functional organs. Shyer studies the emergence of biological form, or morphogenesis, using the chicken embryo as a model system. By focusing on physical dynamics, the lab is able to gain insight into critical symmetry-breaking events that control how tissues and organs take shape. 

As an organism develops, homogenous tissues gradually give rise to complex morphological features. Understanding this process is crucial to enhancing fundamental knowledge about development. In recent decades, the prominence of genetic models has led to an assumption that patterns of gene expression, more than any other factor, govern tissue formation. Taking an alternative course, the Shyer lab focuses on the mechanical forces that influence morphogenesis. Her team takes an integrative approach to developmental biology, melding physical and molecular perspectives.

To better understand the dynamics of morphogenesis, the lab measures and perturbs physical aspects of cells in chicken embryos. The group conducts experiments in eggs, whole tissue explants, and primary cells extracted from embryos. Using these techniques, Shyer seeks to determine whether, given the appropriate physical and chemical contexts, researchers can reconstitute tissue dynamics from cellular components. The emergence of feather follicles in birds is analogous to that of hair follicles in mammals. The Shyer lab therefore uses avian skin as a model for investigating questions about pattern formation that may be relevant in human skin. An applied goal of the lab is to uncover tactics for generating lab-grown tissues that more faithfully mimic their natural counterparts. Though scientists can already generate tissue from cultured cells, these products have limited clinical usefulness because they often fail to develop important morphological features. For example, skin grafts made from cultured cells using existing techniques do not form hair follicles or sweat glands—a shortcoming that may cause health issues if used to replace damaged skin. A lack of sweat glands, for instance, can lead to problems with thermoregulation. Previously, Shyer and co-author Alan Rodrigues showed that avian follicle morphology and gene expression patterns depend on contractility-driven cellular mechanics. These findings corroborate the scientists’ view that mechanical processes can precede and trigger gene-expression changes that are cell fate-determining. Shyer and Rodrigues ultimately aim to build unified models that integrate mechanical and molecular perspectives of morphogenesis. To test the generality of these mechanisms, they hope to explore whether other tissue types demonstrate patterning dynamics similar to those observed in skin.