주요 콘텐츠로 건너뛰기

귀하의 브라우저가 완벽하게 지원되지 않습니다. 옵션이 있는 경우 최신 버전으로 업그레이드하거나 Mozilla Firefox, Microsoft Edge, Google Chrome 또는 Safari 14 이상을 사용하세요. 가능하지 않거나 지원이 필요한 경우 피드백을 보내주세요.

이 새로운 경험에 대한 귀하의 의견에 감사드립니다.의견을 말씀해 주세요 새 탭/창에서 열기

Elsevier
엘스비어와 함께 출판

Conference chair

Peter Friedl

PPF

Prof. Peter Friedl

Department of Medical BioSciences, Radboudumc, The Netherlands

Peter Friedl. M.D., Ph.D. is directing the Microscopical Imaging Centre of the Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands and, from 2011 to 2023, held a joint-faculty position at the University of Texas MD Anderson Cancer Center, Houston, TX, USA. Dr. Friedl received his M.D. degree from the University of Bochum, Germany in 1992 and the Ph.D. degree from the McGill University, Montreal in 1996. In 2002, he was board-certified as clinical dermatologist and 2003 as allergologist. 

He applies advanced microscopy and molecular intervention in 3D culture and preclinical tumor models to identify their response to molecular targeted and immunotherapy. He received numerous awards for advancing microscopy in the fields of cancer metastasis, host response to material and innovative 3D assays, including the Felix-Wankel Animal Protection Award (1994), the German Cancer Award (2008), the Award of the Advancement of Science (2014) and the European Molecular Imaging Award (2016). Research summary: His research interest is in applying innovative 3D models and engineered matrices to uncover the mechanisms and plasticity of cell migration in immune regulation and cancer metastasis, with emphasis on cell-matrix adhesion, pericellular proteolysis and cell-cell communication during migration. His laboratory identified pathways determining diversity and plasticity of cell migration, collective cancer cell invasion, and the contribution of migration pathways to immune defense and cancer resistance. His discoveries have provided a nomenclature for the different types of cell migration and their roles in building and (re)shaping tissue, with emphasis on inflammation, regeneration and cancer. His therapeutic preclinical studies focus on the intravital visualization of niches and mechanisms and strategies to overcome therapy resistance.