跳到主要內容

很遺憾,我們無法支援你的瀏覽器。如果可以,請升級到新版本,或使用 Mozilla Firefox、Microsoft Edge、Google Chrome 或 Safari 14 或更新版本。如果無法升級,而且需要支援,請將你的回饋寄給我們。

我們衷心感謝你對這個新體驗的回饋。告訴我們你的想法打開新的分頁/視窗

Elsevier
與我們共同出版

Conference speaker

Stefano Picolo

SP

Stefano Piccolo

University of Padova, Italy

Talk Title: Mechanical forces and their role in organizing cellular neighborhoods

We study how cells sense their environment and use this information to build and maintain tissues with specific form, size and function. We study how these mechanical inputs drive epigenetic reprogramming of epithelial cells into specific fates, and associated changes in the function and composition of surrounding stromal cells. Our ultimate goal is to dissect and interfere with these events to develop innovative strategies to tackle advanced tumors and metastases.

Tissue architecture, mechanical forces and cell shape are overarching, yet poorly understood regulators of cell behavior. Key elements of these signals are cell-extracellular matrix (ECM) and cell-cell adhesions, cell polarity and the mechanical-induced distortion of the cytoskeleton that keep individual cells and whole tissues in a certain shape.

We pioneered the notion that mechanical signals and cell shape are converted into biochemical responses by two related transcription factors, YAP and TAZ (Dupont et al., Nature 2011; Aragona et al., 2013; Panciera et al., 2017), that serve as central elements by which, in living systems, form dictates biological function. Our work is thus mainly centered on the biology of YAP/TAZ, two closely related transcriptional regulators playing essential functions in tissue regeneration and cancer (reviewed in Zanconato et al., 2016; Totaro et al., 2018). A central goal in our laboratory is to uncover the nature of cellular mechanotransduction systems in normal and pathologic contexts.