跳到主要內容

很遺憾,我們無法支援你的瀏覽器。如果可以,請升級到新版本,或使用 Mozilla Firefox、Microsoft Edge、Google Chrome 或 Safari 14 或更新版本。如果無法升級,而且需要支援,請將你的回饋寄給我們。

我們衷心感謝你對這個新體驗的回饋。告訴我們你的想法 打開新的分頁/視窗

Elsevier
與我們共同出版

Profile

 Walter Paulus

WP

Walter Paulus

University Medical Centre, Göttingen, Germany

Dr. Paulus is Emeritus Professor of Clinical Neurophysiology and former Clinical Director, Department of Clinical Neurophysiology, University Medical Centre, Göttingen, Germany. In 1978, he started training in Neurology at the University Hospital for Neurology in Düsseldorf. In 1980, he spent 6 months at the National Hospital for Neurology and Neurosurgery in London. After receiving his specialty degree in Neurology, he continued at the Alfried Krupp Hospital in Essen and then in 1987 at the Ludwig Maximilian’s University in Munich. He was appointed to faculty in Göttingen in 1992. Since his retirement in 2021 from his Göttingen position, he continues EU-funded research at the Department of Neurology, Ludwig Maximilian’s University. From 2014 to 2018, he was chair of the European and African Chapter of the International Federation of Clinical Neurophysiology (IFCN), from 2018 to 2022 President of the IFCN. Awards: Prize for the best thesis of the University of Düsseldorf (1979); Hans Berger Prize of the DGKN (2016); Pierre Gloor Award of the ACNS (2022); European Career Achievement on Non-invasive Brain Stimulation Award of the European Society for Brain Stimulation (2024).

Dr. Paulus and colleagues developed techniques for transcranial direct, alternating, and random noise stimulation (tDCS, tACS, tRNS) with the aim of modulating brain excitability. These transcranial electrical stimulation (tES) modalities are now widely used across the world in basic research to study brain-behavior relationships and in clinical research to modify disease expression. In Dr. Paulus’ early work, plastic aftereffects of tES were quantified in the motor cortex by using transcranial magnetic stimulation (TMS) induced motor evoked potentials as output. Dr. Paulus and colleagues showed that defined intensity and time windows determine the plastic behavior of the brain, in line with the increase in intraneuronal calcium levels. Initially seemingly simple relationships, such as cathodal stimulation being inhibitory and anodal stimulation being excitatory, or linear relationships between stimulation duration or intensity and aftereffects, were subsequently specified in more complex non-linear models. State dependency was explored; at first glance, simple anodal/cathodal aftereffect induction applied only to the resting state of the motor cortex. Mental challenges or motor activation led to collapse or reversal of aftereffects. Surround inhibition in conjunction with a “leaky membrane” hypothesis can model these effects. Dr. Paulus and colleagues described homeostatic mechanisms when combining electrical and rTMS methods. They also investigated the importance of the directionality of current flow, both for electrical and magnetic stimulation. Pioneering work was done on the co-application of many CNS-active drugs, which essentially influence the effects of both electrical and repetitive magnetic stimulation methods. These and other results have aided in the improvement of clinical stimulation protocols such as in the treatment of major depression.

“Dr. Paulus launched entire new areas of Brain Stimulation – tDCS, tACS, tRNS. His initial studies showed to a skeptical world that these interventions can change brain activity immediately and for some time after stimulation’ said Dr. Mark George, Editor in Chief of Brain Stimulation. “He also trained and mentored many of the innovative scientists in this field. Importantly he organized a series of early science meetings that served as the basis of the today’s world brain stimulation community.”

"Over several decades, Dr. Paulus’ work has led to the widespread use of non-invasive transcranial Electrical Stimulation techniques in basic and clinical research. The strong global interest in tDCS, tACS, and tRNS derive from Dr. Paulus’ development of these modalities and demonstration of their neuroplastic effects.” according to Dr. Harold A. Sackeim, founding editor of Brain Stimulation and chair of the awards committee.