跳到主要內容

很遺憾,我們無法支援你的瀏覽器。如果可以,請升級到新版本,或使用 Mozilla Firefox、Microsoft Edge、Google Chrome 或 Safari 14 或更新版本。如果無法升級,而且需要支援,請將你的回饋寄給我們。

我們衷心感謝你對這個新體驗的回饋。告訴我們你的想法 打開新的分頁/視窗

Elsevier
與我們共同出版
Article

2023 Reaxys 獎

2024年1月8日

今年(2023 年)Elsevier 與國立臺灣大學化學系繼續合作,舉辦第三屆 Reaxys 獎,鼓勵年輕化學家的創新研究,並分享 Reaxys 如何支持他們的學習與研究。本次 Reaxys 獎博士得獎者為魏佑臣,碩士得獎者為吳奇樺及魯嶽。恭喜他們獲得殊榮,實至名歸,以下為三位得獎者的簡介以及他們的 Reaxys 的使用心得分享。

博士獎

魏佑臣 Yu-Chen Wei

  • Department of Chemistry, National Taiwan University, Taiwan

  • Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan

PUBLICATIONS
  1. Yu-Chen Wei, Kai-Hua Kuo, Yun Chi, Pi-Tai Chou, Efficient Near-Infrared Luminescence of Self-Assembled Platinum (II) Complexes: From Fundamentals to Applications, 

    Acc. Chem. Res.2023, 56, 689–699.

  2. Yu-Chen Wei, Liang-Yan Hsu, Polaritonic Huang-Rhys Factor: Basic Concepts and Quantifying Light-Matter Interaction in Medium, J. Phys. Chem. Lett. 2023, 14, 2395-2401.

  3. Yu-Chen Wei,† Bo-Han Chen,† Ren-Siang Ye, Hsing-Wei Huang, Jia-Xuan Su, Chao-Yang Lin, Justin Hodgkiss, Lian-Yan Hsu, Yun Chi, Kai Chen, Chih-Hsuan Lu, Shang-Da Yang, Pi-Tai Chou, Excited-State THz Vibrations in Aggregates of Pt(II) Complexes Contribute to the Enhancement of Near-Infrared Emission Efficiencies, Angew. Chem. Int. Ed2023, 62, e202300815. (†: Equal contribution)

  4. Sheng-Fu Wang; Bo-Kang Su, Xue-Qi Wang, Yu-Chen Wei, Kai-Hua Kuo, Chih-Hsing Wang, Shih-Hung Liu, Liang-Sheng Liao; Wen-Yi Hung, Li-Wen Fu, Wei-Tsung Chuang, Minchao Qin, Xinhui Lu, Caifa You, Yun Chi, Pi-Tai Chou, Polyatomic Molecules with Emission Quantum Yields >20% Enable Efficient Organic Light-Emitting Diodes in the NIR (II) Window. Nat. Photonics 2022, 16, 843-850.

  5. Yu-Chen Wei, Liang-Yan Hsu, Cavity-Free Quantum-Electrodynamic Electron Transfer Reactions. J. Phys. Chem. Lett. 2022, 13, 9695-9702.

  6. Pei-Yun Chen, Yu-Chiao Liu, Hui-Yu Hung, Ming-Lun Pan, Yu-Chen Wei, Tung-Chun Kuo, Mu-Jeng Cheng, Pi-Tai Chou, Ming-Hsi Chiang, and Yao-Ting Wu, Diindeno[2,1-b:2’,1’-h]biphenylenes: Syntheses, Structural Analyses, and Properties. Org. Lett. 2021, 23, 8794-8798.

  7. Yu-Chen Wei; Ming-Wei Lee; Pi-Tai Chou; Gregory D. Scholes; George C. Schatz; Liang-Yan Hsu, Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair? J. Phys. Chem. C 2021, 125, 18119-18128.Bo-Kang Su.† 

  8. Yu-Chen Wei,† Wei-Tsung Chuang, Shih-Chang Weng, Sheng-Fu Wang, Deng-Gao Chen, Zhi-Xuan Huang, Yun Chi, Pi-Tai Chou, The Observation of Interchain Motion in Self-Assembled Crystalline Platinum(II) Complexes: An Exquisite Case but By No Means the Only One in Molecular Solids. J. Phys. Chem. Lett. 2021, 12, 7482-7489. (†: Equal contribution)

  9. Zong-Ying Liu, Yu-Chen Wei, Pi-Tai Chou, Correlation between Kinetics and Thermodynamics for Excited-State Intramolecular Proton Transfer Reactions. 

    J. Phys. Chem. A 2021, 125, 6611-6620.

  10. Chi-Shin Wang,† Yu-Chen Wei,† Ming-Lun Pan, Cheng-Ham Wu, Pi-Tai Chou, Yao-Ting Wu, New [2,2]Fluorenophanes Give Insights into Asymmetric Charge Transfer-Mediated Exciton Delocalization along the π-π Packing Direction. Chem. Eur. J. 2021, 27, 8678. (†: Equal contribution)

  11. Yu-Chen Wei, Shin-Wei Shen, Cheng-Ham Wu, Ssu-Yu Ho, Zhiyun Zhang, Chih-I Wu, Pi-Tai Chou., Through-Space Exciton Delocalization in Segregated HJ-Crystalline Molecular Aggregates. J. Phys. Chem. A 2021, 125, 943-953.

  12. Min-Chih Tang,† Yu-Chen Wei,† Yen-Chen Chu, Cai-Xin Jiang, Zhi-Xuan Huang, Chi-Chi Wu, Tzu-Hsuan Chao, Pei-Hsun Hong, Mu-Jeng Cheng, Pi-Tai Chou, Yao-Ting Wu, [2,2](5,8)Picenophanediene: Synthesis, Structural Analyses and Reversible Intramolecular Structure Conversion. J. Am. Chem. Soc.2020, 142, 20351-20358. (†: Equal contribution)

  13. Shin-Wei Shen,† Yu-Chen Wei,† Fang-Yu Fu, Keh-Jiunh Chou, Sheng Fu Wang, Li-Wen Fu, Wei-Tsung Chuang, Meng-Lin Tsai, Mei-Hsin Chen, Yun Chi, Pi-Tai Chou, Chih-I Wu ,“ Interlayer Charge-transfer Exciton in Highly Ordered Organic/Inorganic van der Waals Stacked Heterostructures: Self-Assembled Pt(II) Complex on PtSe2 Monolayer. J. Phys. Chem. C2020, 124, 25538–25546. (†: Equal contribution)

  14. He Tian, Guangchen Sun,† Yu-Chen Wei,† Jia-An Lin, Zong-Ying Liu, Zhiyun Zhang, Jianhua Su, Pi-Tai Chou, Diversified Excited‐State Relaxation Pathways of Donor‐Linker‐Acceptor Dyads Controlled by the Bent‐to‐Planar Motion of Donor. Angew. Chem. Int. Ed2020

    , 132, 18770-18777. (†: Equal contribution)

  15. Yu-Chen Wei, Sheng Fu Wang, Yun Hu, Liang-Sheng Liao, Deng-Gao Chen, Kai-Hsin Chang, Chih-Wei Wang, Wei-Hsiang Chan, Jia-Ling Liao, Wen-Yi Hung, Tsai-Hui Wang, Po-Ting Chen, Hsiu-Fu Hsu, Yun Chi, Pi-Tai Chou, Overcoming the Energy Gap Law in Near-Infrared OLEDs by Exciton–vibration Decoupling. Nat. Photonics, 2020, 14, 570-577.

  16. Sheng Fu Wang, Yi Yuan, Yu-Chen Wei, Wei-Hsiang Chan, Li-Wen Fu, Bo-Kang Su, I-Yun Chen, Keh-Jiunh Chou, Po-Ting Chen, Hsiu-Fu Hsu, Chang-Lun Ko, Wen-Yi Hung, Chun-Sing Lee, Pi-Tai Chou, Yun Chi, Highly Efficient Near-Infrared Electroluminescence up to 800 nm Using Platinum(II) Phosphors. Adv. Funct. Mater2020, 30, 2002173.

  17. Chun-Ying Huang, Ssu-Yu Ho, Chien-Hsun Lai, Chang-Lun Ko, Yu-Chen Wei, Jia-An Lin, Deng-Gao Chen, Tzu-Yu Ko, Ken-Tsung Wong, Zhiyun Zhang, Wen-Yi Hung and Pi-Tai Chou, Insights into energy transfer pathways between the exciplex host and fluorescent guest: attaining highly efficient 710 nm electroluminescence. J. Mater. Chem. 2020, 8, 5704-5714.

  18. Sheng Fu Wang, Li-Wen Fu, Yu-Chen Wei, Shih-Hung Liu, Jia-An Lin, Gene-Hsiang Lee, Pi-Tai Chou, Jian-Zhi Huang, Chih-I Wu, Yi Yuan, Chun-Sing Lee, and Yun Chi, Near-Infrared Emission Induced by Shortened Pt–Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. Inorg. Chem2019, 58, 13892-13901.

  19. Jia-An Lin, Shu-Wei Li, Zong-Ying Liu, Deng-Gao Chen, Chun-Ying Huang, Yu-Chen Wei

    , Yi-Yun Chen, Zheng-Hua Tsai, Chun-Yuan Lo, Wen-Yi Hung, Ken-Tsung Wong, and Pi-Tai Chou, Bending-Type Electron Donor–Donor–Acceptor Triad: Dual Excited-State Charge-Transfer Coupled Structural Relaxation. Chem. Mater2019. 13, 5981-5992.

  20. Chi-Shin Wang,† Yu-Chen Wei,† Kai-Hsin Chang, Pi-Tai Chou, Yao-Ting Wu, Indeno[1,2-b]fluorene-based [2,2]Cyclophanes with 4n/4n and 4n/[4n+2]π Electrons: Syntheses, Structural Analyses and Excitonic Coupling Properties. Angew. Chem. Int. Ed2019, 131, 10264-10268. (†: Equal contribution)

  21. Yu-Chen Wei, Zhiyun Zhang, Yi-An Chen, Cheng-Ham Wu, Zong-Ying Liu, Ssu-Yu Ho, Jiun-Chi Liu, Jia-An Lina and Pi-Tai Chou, Mechanochromism Induced through the Interplay between Excimer Reaction and Excited State Intramolecular Proton Transfer. Commun. Chem2019, 2, 1-9.

  22. Zhiyun Zhang, Chi‐Lin Chen, Yi‐An Chen, Yu‐Chen Wei, Jianhua Su, He Tian, Pi‐Tai Chou, Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing ortho‐Methyl Groups. Angew. Chem. Int. Ed2018, 57, 9880-9884

  23. Ting‐Hsun Tu, Yi‐Ting Chen, Yi‐An Chen, Yu‐Chen Wei, You‐Hua Chen, Chi‐Lin Chen, Jiun

    ‐Yi Shen, Yi‐Han Chen, Ssu‐Yu Ho, Kum‐Yi Cheng, Shern‐Long Lee, Chun‐hsien Chen, Pi‐Tai Chou, The Cyclic Hydrogen‐Bonded 6‐Azaindole Trimer and its Prominent Excited‐State Triple‐Proton‐Transfer Reaction. Angew. Chem. Int. Ed2018, 57, 5020-5024.

Reaxys 使用心得-魏佑臣 Yu-Chen Wei

Reaxys helps me find the physical property of common molecules in my research field. The example is shown in Figure 1. I can find most physical properties I want such as IR spectra, Uv/Vis spectra, refractive index, etc. This function saves me a lot of time to repeat the experiments to characterize the physical properties of well-known molecules.

Figure 1. Search page of the physical data of toluene in Reaxys.

In addition, the best function of Reaxys is that you can use the molecular structure to search the relative studies. As shown in Figure 2, I can draw an arbitrary molecular structure and click the button “Transfer to query” to find whether there is similar research topic associated with my proposed molecular structures. This function is quite useful in designing new molecules and discussing the perspective of certain molecular moiety in the journal article.

Figure 2. Search input of the molecular structure in Reaxys.

The following content is the example that I applied Reaxys to assist my research. Figure 3 shows the comparison of theoretical and experimental results of energy-gap dependence of electron transfer rates [J. Phys. Chem. Lett. 2022, 13, 9695–9702]. The molecules shown in Figure 3 is the ones that I use Reaxys to search the photophysical properties in order to obtain the Uv/vis emission quantum yield and emission spectra. With these data together with the measured emission decay lifetimes, the observed radiative lifetimes were derived, which correspond to the experimental data point in Figure 3. Note that this paper has been awarded by National Center for Theoretical Science (NCTS) for 2023 student outstanding award.

Figure 3. Comparison of QED-ET theory and experimental results. Reaxys help me to find the experimental data points. Reprinted with permission from [J. Phys. Chem. Lett. 2022, 13, 9695–9702]. Copyright 2022 American Chemical Society.

碩士獎

吳奇樺 Chi-Hua Wu

個人學歷
  • 國立成功大學化學系 學士 2016–2020

  • 國立臺灣大學化學系 碩士 2020–2023

研究經歷
  • 中央研究院基因體研究中心,108-109 年

    • 專題研究

    • 108年度科技部大專學生研究計畫(計畫編號:108-2813-C-001-019-M)

  • 國立臺灣大學化學所陳昭岑教授實驗室,109-112 年

    • 雙邊胍基修飾具有聚集誘導放光性質之順式與偕式四苯乙烯分子骨架作為去氧核醣核酸分子探針並探討其二級結構變化

    • 胍基與磷酸基團修飾四苯乙烯應用於自我組裝誘導發光超分子

Reaxys 使用心得-吳奇樺 Chi-Hua Wu

在我的論文中,主要探討胍基(guanidine)與磷酸鹽之間非共價鍵結合配對能力,研究在具有聚集誘導放光性質的四苯乙烯分子骨架上,分別在順式(cis-form)以及偕式(gem-form)引入兩個胍基(cis-2G/gem-2G),藉以調控胍基間的間距,可以探討胍基與不同 DNA 之間的作用模式,作為標靶 DNA 的螢光分子探針;並發展其與具有磷酸基團的四苯乙烯衍生物(cis-2P/TPE4P)形成不同比例之自我組裝誘導發光超分子,作為氫鍵有機框架材料,探討作為氣體儲存的可能應用。因此在我的研究中,如何快速合成化合物,以探討其性質是關鍵因素。

圖一 關鍵字搜尋

起初研究時,主要遇到兩大問題 具有胍基修飾之四苯乙烯標靶 DNA 的螢光分子探針該如何合成?以及可以透過那些實驗證實胍基能與 DNA 上的磷酸鹽產生結合?因此我先是透過 Reaxys 關鍵字,搜尋 guanidinium & nucleic acid & tetraphenylethylen(圖一、圖二),感謝 Reaxys 及時幫助我統整相關文獻搜尋,並分享文章連結以方便我詳細研讀,最後找到其中的一篇作為我研究參考,不僅提供相關實驗做法,也涵蓋合成方式,日後成為我研究領域中重要參考文獻。

圖二 資料搜尋

第二部分是具磷酸 基團的官能基引入四苯乙烯分子骨架的反應條件修正。過去實驗室學長提供的方法為選擇具有酯基保護的氯磷酸二乙酯為反應試劑,接著使用溴三甲基矽酯(TMSBr)與吡啶(pyridine) 進行選擇性去保護,得到磷酸衍生物。鑒於分子骨架的差異,此方法並不適用於修飾四苯乙烯分子,因此,我另外透過 Reaxys搜尋合成條件。起初嘗試使用 Retrosynthesis 搜尋功能,但發現相似分子結構的研究探討較少,因此我嘗試使用 quick search(圖三),透過相似結構搜尋,最後找到適合磷酸化的條件,完成磷酸修飾四苯乙烯合成(圖四)。

圖三 合成方法搜尋

圖四 合成方法檢索

綜合上述, Reaxys 在我研究領域中,提供極大之資料庫幫助我相關文獻搜尋以及合成條件的改善,增加我的研究效率。

魯嶽 Yueh Lu

Experience

  • Teaching Assistant, Organic Chemistry Lab | Feb. 2021 – Jan. 2022

  • Teaching Assistant, Organic Chemistry | Feb. 2020 – June 2020

Scholarship and Awards

  • Good Oral Presentation Award

    | 6th ACS Taiwan Chapter Graduate Student Conference, May 2023, Taipei, Taiwan

  • Best Oral Presentation Award | PST Medicinal Chemistry Symposium, Apr. 2023, Tainan, Taiwan

    • Travel Grant was awarded by the symposium to participate in ACS Fall 2023 at San Francisco, CA

  • Mr. Zhong-Yae Wu Education Charity Foundation Scholarship

    | Dec. 2022, National Taiwan University(吳仲亞先生教育慈善基金會獎助學金)

  • Mr. Zhong-Yae Wu Education Charity Foundation Scholarship

    | Dec. 2019, National Taiwan University(吳仲亞先生教育慈善基金會獎助學金)

  • College Student Research Scholarship

    | July 2019 – Feb. 2020, MOST, Taiwan(科技部大專生研究計畫)

Conference

  • Oral Presentation

    • 6th ACS Taiwan Chapter Graduate Student Conference | May 2023, Taipei, Taiwan

    • 27th PST Medicinal Chemistry Symposium | Apr. 2023, Tainan, Taiwan

  • Poster

    • Undergraduate Students Poster Exhibition | June 2022, Dept. of Chemistry, National Taiwan University

    • 18th Asian Chemical Congress | Dec. 2019, Taipei, Taiwan

    • 2019 Chemistry National Meeting, CSLT | Dec.2019, Taipei, Taiwan

Extracurricular

  • Event Coordinator, Freshman Welcome Summer Camp | Aug. 2017

  • Vice President, Student Association of Dept. of Chemistry | Sept. 2018 – June 2019

Reaxys 使用心得-魯嶽 Yueh Lu

我的碩士論文題目為「合成針對細菌之共軛化合物」,目標之一是合成天然鐵載體 vibriobactin 與螢光基團 BODIPY 連接所形成的共軛化合物 1;而為了合成化合物 1,我必須製備化合物 2 與 3 兩個建構單元。在合成這兩個建構單元時曾經遭遇許多障礙,但是在 Reaxys 的協助下,我找到合成這兩個關鍵建構單元的最佳條件,且具有眾多優點:快速,簡易,高產率。

圖一、化合物 1、2、3 的結構。

在化合物 2 的合成設計中,合環步驟會同時生成 oxazoline 雜環,並影響雜環上甲基與酯基(Ester)的立體位向,因此是最關鍵的步驟。我曾經嘗試依照文獻步驟,利用帶有取代基的腈類化合物(Nitrile)與蘇胺酸(Threonine)於加熱條件下合環,但分離純化後並未觀察到對應產物;我也曾經將對應的醯胺(Amide)前驅物 4 與 Burgess Reagent 反應,但反應結果不盡理想,副產物眾多難以分離。最後在 Reaxys 的協助下,我找到利用 DAST(Diethylaminosulfur trifluoride)試劑進行合環的反應條件,此方法具有極高產率且易於分離純化。得到合環產物 5 後,我首先利用傳統的氫氧化鈉作為甲酯(Methyl ester)水解的條件,卻觀察到雜環結構被破壞;最後也利用 Reaxys 找到 TMSOK 作為甲酯水解的最佳試劑:反應快速,產率高,也僅需使用過濾即可得到高純度的化合物 2。

圖二、化合物 2 的合成途徑。

合成化合物 3,即 BODIPY 螢光基團時亦遭遇甲酯水解反應不完全的問題,總是觀察到大量起始物殘留。但是我再一次的借助 Reaxys,發現起始物化合物 6 在 IPA(Isopropanol)中的溶解度更佳,使起始物可以被消耗完畢,也因此克服化合物 3 的合成問題。

相信諸多在進行化學合成的研究生們都希望找到具有最高產率,最短的反應時間以及最簡單的純化方法的理想反應條件。我在碩士班期間大量利用 Reaxys 幫助我找到符合上述要求的反應條件,使我的實驗步驟大量簡化,也更順利的完成碩士班的研究。

圖三、化合物 3 的合成途徑。