跳到主要內容

很遺憾,我們無法支援你的瀏覽器。如果可以,請升級到新版本,或使用 Mozilla Firefox、Microsoft Edge、Google Chrome 或 Safari 14 或更新版本。如果無法升級,而且需要支援,請將你的回饋寄給我們。

我們衷心感謝你對這個新體驗的回饋。告訴我們你的想法 打開新的分頁/視窗

Elsevier
與我們共同出版

Download "How Data Science is Changing R&D in Chemicals and Materials"

This collection of published research from Elsevier Innovation Intelligence provides an in-depth look at how industry innovators are using data science to propel R&D.

Download now to access the following articles:

Natural language processing-guided meta-analysis and structure factor database extraction from glass literature. Journal of Non-Crystalline Solids: X, Volume 15, September 2022. Mohd Zaki, Sahith Reddy Namireddy, Tanu Pittie, Vaibhav Bihani, Shweta Rani Keshri, Vineeth Venugopal, Nitya Nand Gosvami, Jayadeva, N.M. Anoop Krishnan.

History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, Volume 169, 1 July 2018. Dazhi Yang, Jan Kleissl, Christian A. Gueymard, Hugo T.C. Pedro, Carlos F.M. Coimbra.

Machine learning models representing catalytic activity for direct catalytic CO2 hydrogenation to methanol. Materials Today: Proceedings, Volume 72, Part 1, 2023. Pallavi Vanjari, Reddi Kamesh, K. Yamuna Rani.

你的個人資料
貴組織資料